본문 바로가기
네트워크/논문 분석·리뷰

[Wifi] Mitigating starvation in dense WLANs: A multi-armed Bandit solution

by 메릴린 2023. 3. 7.
728x90

Mitigating starvation in dense WLANs: A multi-armed Bandit solution

🔑 중앙의 administrator가 MAB를 주어진 WLAN의 AP들의 optimal configurations를 찾고자함

Objective function

⇒ evaluates the quality of a network configuration for any WLAN

$N_A$ 개의 AP에 대해 각 AP는 $(\text{TX_PWR}, \text{OBSS/PD})$의 configuration parameters를 가지고 있다.

  1. guarantee enough throughput for each AP and STA ➡️ the starving STAs의 개수로 판단
  2. ensure a fair share of nodes in WLAN ➡️ Jain’s index와 같은 fairness metrics로 판단
  3. maximize the WLAN overall throughput ➡️ the system over throughput으로 판단

위 세 개를 충족시키는 최적의 $N_A$ pairs of parameters $(\text{TX_PWR}, \text{OBSS/PD})$ 를 찾고자 함

We consider the proportional fairness (PF), which is simply obtained by multiplying the normalized throughputs of STAs, i.e., $\Pi_i{T_i/T_i^A}$ , to obtain a natural tradeoff between criteria (ii) and (iii).

the starving STAs

$$
T_i/T_i^A < \gamma
$$

  • $T_i$ : STA $i$ 의 throughput
  • $T_i^A$ : STA $i$ 의 attainable throughput
    • the throughput STA $𝑖$ would have in the absence of all other competing devices in the
      WLAN.
  • $\gamma$ : Starvation threshold for a STA (Say $\gamma$ = 10%)

Multi-armed bandit solution

  • 총 $21^{2N_A}$의 arms ➡️ almost infinite

⇒ IMAB (Infinitely Many-Armed Bandit) 문제로 치환

  • Sampler 와 Optimizer로 프로세스를 구분
  • Sampler를 통해 Optimizer에 적용할 “a subset of arms”(the optimizer’s reservoir)를 구함

Optimizer

  • Thompson Sampling 이용
  • $n\epsilon$ 의 확률로 Sampler로부터 new configuration을 받아와 실험
  • reservoir $E$에서 가장 최적의 값을 가지는 configuration으로 실험
    • sampling을 통해 exploration
    • $\argmax$을 고름으로써 exploitation

Sampler

  • P=2 starting points : the default configuration of 802.11 and one that minimizes the average degree of the WLAN’s conflicts graph.
  • the default configuration of 802.11 $(\text{TX_PWR}, \text{OBSS/PD})$ = $(20, -82)$
  • two APs are in conflict : cannot transmit at the same time.
  • conflict graph of APs의 average degree가 0.5가 될 때까지 round-robin 방식으로 $\text{TX_PWR}$ 감소

예시

Numerical results

Experimental Settings

Scenarios

  1. T1
    1. 6 APs, 12 UEs
  2. T2
    1. 10 APs, about 50 STAs
    2. an average of 5 STAs per AP
    3. high dense wifi deployments
  3. T3
    1. 10 APs about 50 STAs
    2. an average of 5 STAs per AP
    3. T2보다 AP와 STA 사이의 평균 거리가 더 멀어

Simulator Parameters Set

Points

  • Starvation 을 판단하는 기준을 적용한 것
    • Realistic Goals
  • Centralized Computation
  • Almost Infinite Number of Arms
728x90
반응형

댓글